Abstract
A novel catalytic system has been developed to accomplish the
hydrophosphorylation of terminal and internal alkynes with high
isolated yields (up to 96%) and excellent regio- and stereoselectivity
(>99:1). The key factor was to apply a low-ligated palladium/triphenylphosphane
(1:2) catalytic system in the presence of a catalytic amount of
trifluoroacetic acid. The catalytic system so developed has been
applied successfully to permit the formation of diverse alkenylphosphonates
utilizing a variety of available H-phosphonates and alkynes.
Key words
addition reactions - alkynes - palladium - homogenous catalysis - phosphorylations
References
<A NAME="RA54309ST-1A">1a </A>
Catalytic
Heterofunctionalization
Togni A.
Grützmacher H.
Wiley-VCH;
Weinheim:
2001.
<A NAME="RA54309ST-1B">1b </A>
Alonso F.
Beletskaya IP.
Yus M.
Chem.
Rev.
2004,
104:
3079
<A NAME="RA54309ST-1C">1c </A>
Beller M.
Seayad J.
Tillack A.
Jiao H.
Angew. Chem. Int. Ed.
2004,
43:
3368
<A NAME="RA54309ST-1D">1d </A>
Suginome M.
Ito Y.
J. Organomet. Chem.
2003,
685:
218
<A NAME="RA54309ST-1E">1e </A>
Suginome M.
Ito Y.
J. Organomet. Chem.
2003,
680:
43
<A NAME="RA54309ST-1F">1f </A>
Kondo T.
Mitsudo T.
Chem. Rev.
2000,
100:
3205
<A NAME="RA54309ST-2A">2a </A>
Beletskaya IP.
Ananikov VP.
Eur. J. Org. Chem.
2007,
3431
<A NAME="RA54309ST-2B">2b </A>
Beletskaya IP.
Ananikov VP.
Pure Appl.
Chem.
2007,
79:
1041
For recent reviews, see:
<A NAME="RA54309ST-3A">3a </A>
Coudray L.
Montchamp J.-L.
Eur. J. Org. Chem.
2008,
3601
<A NAME="RA54309ST-3B">3b </A>
Tanaka M.
Top.
Curr. Chem.
2004,
232:
25
<A NAME="RA54309ST-3C">3c </A>
Baillie C.
Xiao J.
Curr. Org. Chem.
2003,
7:
477
<A NAME="RA54309ST-3D">3d </A>
Beletskaya IP.
Kazankova MA.
Russ.
J. Org. Chem. (Engl. Transl.)
2002,
38:
1391
For selected examples, see:
<A NAME="RA54309ST-4A">4a </A>
Quntar AAA.
Gallily R.
Katzavian G.
Srebnik M.
Eur. J.
Pharmacol.
2007,
556:
9
<A NAME="RA54309ST-4B">4b </A>
Doddridge ZA.
Bertram RD.
Hayes CJ.
Soultanas P.
Biochemistry
2003,
42:
3239
<A NAME="RA54309ST-4C">4c </A>
Jung K.-Y.
Hohl RJ.
Wiemer AJ.
Wiemer DF.
Bioorg. Med. Chem.
2000,
8:
2501
<A NAME="RA54309ST-4D">4d </A>
Cermak DM.
Wiemer DF.
Lewis K.
Hohl RJ.
Bioorg.
Med. Chem.
2000,
8:
2729
<A NAME="RA54309ST-4E">4e </A>
Amori L.
Costantino G.
Marinozzi M.
Pellicciari R.
Gasparini F.
Flor PJ.
Kuhn R.
Vranesic I.
Bioorg. Med. Chem. Lett.
2000,
10:
1447
<A NAME="RA54309ST-4F">4f </A>
Vidil C.
Morere A.
Garcia M.
Barragan V.
Hamdaoui B.
Rochefort H.
Montero J.-L.
Eur.
J. Org. Chem.
1999,
447
<A NAME="RA54309ST-4G">4g </A>
Harnden MR.
Parkin A.
Parratt MJ.
Perkins RM.
J.
Med. Chem.
1993,
36:
1343
<A NAME="RA54309ST-4H">4h </A>
Dragovich PS.
Webber SE.
Babine RE.
Fuhrman SA.
Patick AK.
Matthews
DA.
Lee CA.
Reich SH.
Prins TJ.
Marakovits
JT.
Littlefield ES.
Zhou R.
Tikhe J.
Ford CE.
Wallace MB.
Meador JW.
Ferre RA.
Brown EL.
Binford SL.
Harr JEV.
DeLisle DM.
Worland ST.
J. Med. Chem.
1998,
41:
2806
<A NAME="RA54309ST-4I">4i </A>
Lazrek HB.
Khaïder H.
Rochdi A.
Barascut J.-L.
Imbach J.-L.
Tetrahedron Lett.
1996,
37:
4701
<A NAME="RA54309ST-4J">4j </A>
Lazrek HB.
Rochdi A.
Khaider H.
Barascut J.-L.
Imbach J.-L.
Balzarini J.
Witvrouw M.
Pannecouque C.
De
Clercq E.
Tetrahedron
1998,
54:
3807
<A NAME="RA54309ST-4K">4k </A>
Tian W.
Zhu Z.
Liao Q.
Wu Y.
Bioorg. Med. Chem. Lett.
1998,
8:
1949
<A NAME="RA54309ST-4L">4l </A>
Holstein SA.
Cermak
DM.
Wiemer DF.
Lewis K.
Hohl RJ.
Bioorg. Med. Chem.
1998,
6:
687
For representative examples of the
asymmetric synthesis of biologically active and related compounds,
see:
<A NAME="RA54309ST-5A">5a </A>
Wang D.-Y.
Hu X.-P.
Huang J.-D.
Deng J.
Yu S.-B.
Duan Z.-C.
Xu X.-F.
Zheng Z.
Angew. Chem. Int. Ed.
2007,
46:
7810
<A NAME="RA54309ST-5B">5b </A>
Hayashi T.
Senda T.
Takaya Y.
Ogasawara M.
J. Am. Chem. Soc.
1999,
121:
11591
<A NAME="RA54309ST-5C">5c </A>
Giordano C.
Castaldi G.
J. Org. Chem.
1989,
54:
1470
<A NAME="RA54309ST-5D">5d </A>
Thomas
AA.
Sharpless KB.
J.
Org. Chem.
1999,
64:
8379
<A NAME="RA54309ST-5E">5e </A>
Burk MJ.
Stammers TA.
Straub JA.
Org. Lett.
1999,
1:
387
<A NAME="RA54309ST-5F">5f </A>
Sulzer-Moss S.
Tissot M.
Alexakis A.
Org.
Lett.
2007,
9:
3749
<A NAME="RA54309ST-5G">5g </A>
Yokomatsu T.
Yoshida Y.
Suemune K.
Yamagishi T.
Shibuya S.
Tetrahedron: Asymmetry
1995,
6:
365
<A NAME="RA54309ST-5H">5h </A>
Cravotto G.
Giovenzana
GB.
Pagliarin R.
Palmisano G.
Sisti M.
Tetrahedron: Asymmetry
1998,
9:
745
<A NAME="RA54309ST-5I">5i </A>
Vieth S.
Costisella B.
Schneider M.
Tetrahedron
1997,
53:
9623
<A NAME="RA54309ST-5J">5j </A>
Henry J.-C.
Lavergne D.
Ratovelomanana-Vidal V.
Genet J.-P.
Beletskaya IP.
Dolgina TM.
Tetrahedron Lett.
1998,
39:
3473
For reviews, see:
<A NAME="RA54309ST-6A">6a </A>
Minami T.
Motoyoshiya J.
Synthesis
1992,
333
<A NAME="RA54309ST-6B">6b </A>
Dembitsky VM.
Quntar AAA.
Haj-Yehiaa A.
Srebnik M.
Mini-Rev.
Org. Chem.
2005,
2:
91
<A NAME="RA54309ST-6C">6c </A>
Failla S.
Finocchiaro P.
Consiglio GA.
Heteroat. Chem.
2000,
11:
493
<A NAME="RA54309ST-6D">6d </A>
Maffei M.
Curr.
Org. Synth.
2004,
1:
355
<A NAME="RA54309ST-6E">6e </A>
Nagaoka Y.
Yakugaku
Zasshi
2001,
121:
771
<A NAME="RA54309ST-7A">7a </A>
Parvole J.
Jannasch P.
Macromolecules
2008,
41:
3893
<A NAME="RA54309ST-7B">7b </A>
Sato T.
Hasegawa M.
Seno M.
Hirano T.
J. Appl. Polym. Sci.
2008,
109:
3746
<A NAME="RA54309ST-7C">7c </A>
Schmider M.
Müh E.
Klee JE.
Mülhaupt R.
Macromolecules
2005,
38:
9548
<A NAME="RA54309ST-7D">7d </A>
Senhaji O.
Robin JJ.
Achchoubi M.
Boutevin B.
Macromol. Chem. Phys.
2004,
205:
1039
<A NAME="RA54309ST-7E">7e </A>
Ebdon JR.
Price D.
Hunt BJ.
Joseph P.
Gao FG.
Milnes GJ.
Cunliffe LK.
Polym. Degrad. Stab.
2000,
69:
267
<A NAME="RA54309ST-7F">7f </A>
Jin S.
Gonsalves KE.
Macromolecules
1998,
31:
1010
<A NAME="RA54309ST-7G">7g </A>
Hertler WR.
J. Polym. Sci., Part A: Polym. Chem.
1991,
29:
869
<A NAME="RA54309ST-8">8 </A>
Han LB.
Tanaka M.
J. Am. Chem. Soc.
1996,
118:
1571
<A NAME="RA54309ST-9A">9a </A>
Zhao C.-Q.
Han L.-B.
Goto M.
Tanaka M.
Angew. Chem.
Int. Ed.
2001,
40:
1929
<A NAME="RA54309ST-9B">9b </A>
Han LB.
Zhang C.
Yazawa H.
Shimada S.
J. Am. Chem. Soc.
2004,
126:
5080
<A NAME="RA54309ST-9C">9c </A>
Han LB.
Hua R.
Tanaka M.
Angew.
Chem. Int. Ed.
1998,
37:
94
<A NAME="RA54309ST-10A">10a </A>
Goulioukina NS.
Dolgina TM.
Beletskaya IP.
Henry J.-C.
Lavergne D.
Ratovelomanana-Vidal V.
Genet J.-P.
Tetrahedron:
Asymmetry
2001,
12:
319
<A NAME="RA54309ST-10B">10b </A>
Gulykina NS.
Dolgina TM.
Bondarenko GN.
Beletskaya IP.
Russ.
J. Org. Chem. (Engl. Transl.)
2003,
39:
797
<A NAME="RA54309ST-11">11 </A>
Han L.-B.
Ono Y.
Shimada S.
J.
Am. Chem. Soc.
2008,
130:
2752
<A NAME="RA54309ST-12">12 </A>
The use of this compound to reverse
the regioselectivity of a palladium-catalyzed reaction between diphenylphosphane oxide
and alkynes was first reported in 1998, see ref. 9c. Later, Han
et al. indicated that ‘it does not affect other palladium-
or rhodium-catalyzed phosphoryl-hydrogen bond additions’,
see ref. 9b; however, this additive was necessary to control the
direction of phosphoryl-hydrogen addition in the case of
the nickel system. Tanaka et al. have questioned the potential application
of this additive for practical implementation in a recent study,
see ref. 16. An acceptable mechanistic picture describing the influence
of this additive on the regioselectivity of the addition reaction is
not available thus far.
<A NAME="RA54309ST-13A">13a </A>
Tayama O.
Nakano A.
Iwahama T.
Sakaguchi S.
Ishii Y.
J. Org. Chem.
2004,
69:
5494
<A NAME="RA54309ST-13B">13b </A>
Beaufils F.
Dénès F.
Renaud P.
Angew.
Chem. Int. Ed.
2005,
44:
5273
<A NAME="RA54309ST-14">14 </A>
Arbuzova SN.
Gusarova NK.
Trofimov BA.
ARKIVOC
2006,
(v):
12
<A NAME="RA54309ST-15">15 </A>
Allen A.
Manke DR.
Lin W.
Tetrahedron
Lett.
2000,
41:
151
<A NAME="RA54309ST-16">16 </A>
Dobashi N.
Fuse K.
Hoshino T.
Kanada J.
Kashiwabara T.
Kobata C.
Nune SK.
Tanaka M.
Tetrahedron Lett.
2007,
48:
4669
<A NAME="RA54309ST-17">17 </A>
The ‘activated’ nature
of the cyclic H-phosphonate facilitated the preferred formation
of double addition product 7 in the palladium-catalyzed
reaction, rather than the formation of product 3 ,
e.g. see ref. 11.
<A NAME="RA54309ST-18">18 </A>
See Supporting Information for a detailed
description.
<A NAME="RA54309ST-19A">19a </A>
Ananikov VP.
Malyshev DA.
Beletskaya IP.
Aleksandrov GG.
Eremenko IL.
Adv.
Synth. Catal.
2005,
347:
1993
<A NAME="RA54309ST-19B">19b </A>
Ananikov VP.
Beletskaya IP.
Russ. Chem.
Bull. Int. Ed.
2008,
57:
754
<A NAME="RA54309ST-20">20 </A>
Palladium-Catalyzed
Hydrophosphorylation; General Procedure: Under argon, Pd2 (dba)3 (31.1
mg, 3.0 × 10-5 mol) and Ph3 P (31.5
mg, 1.2 × 10-4 mol) were placed into a septum-sealed
tube equipped with a magnetic stir bar, followed by the addition
of THF (0.5 mL) through the septum, and the mixture was stirred
for 3 min. When the color of the solution became brown, the H-phosphonate
(1.0 × 10-³ mol) and alkyne (1.0 × 10-³ mol)
were added to the mixture through the septum. Then, TFA (11.4 mg,
1.0 × 10-4 mol) was added, and the
tube was capped with a PTFE-sealed screw cap. The mixture was stirred
at 50 ˚C (see Tables 4 and 5 for additional details relating
to the ratio of the reagents or conditions). After completion of
the reaction, the color of the solution remained brown or changed
to light brown
<A NAME="RA54309ST-21">21 </A>
Compound Isolation
and Purification: After completion of the reaction, the products
were purified by dry-column flash chromatography on silica gel,
see ref. 23. Hexane-EtOAc (for 3a -c , 3e -i , 4a , and 10 ) and hexane-EtOAc-EtOH
(for 3d ) gradient elution was applied.
After drying in a vacuum, the pure products were obtained. The products were
isolated as colorless or light-yellow oils, and their isolated yields
given in Tables
[4 ]
and
[5 ]
were calculated based on the initial
amount of the corresponding H-phosphonate.
<A NAME="RA54309ST-22">22 </A>
Complete characterization of all the
isolated products with ¹ H, ¹³ C,
and ³¹ P NMR spectroscopy, mass spectrometry,
and microanalysis is provided in Section 6 of the Supporting Information.
<A NAME="RA54309ST-23">23 </A>
Harwood LM.
Aldrichimica
Acta
1985,
18:
25